If it's not what You are looking for type in the equation solver your own equation and let us solve it.
72x^2+41x+4=0
a = 72; b = 41; c = +4;
Δ = b2-4ac
Δ = 412-4·72·4
Δ = 529
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{529}=23$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(41)-23}{2*72}=\frac{-64}{144} =-4/9 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(41)+23}{2*72}=\frac{-18}{144} =-1/8 $
| 2x+4x+9=26 | | -8v+3+5v=27 | | 2x-5+135=180 | | 6/7x+6=27 | | 4x2+3x=22 | | X•x+10x+24=0 | | 1/3r-5=12 | | 17=3b-11 | | 16/20=4/c | | 7c-2c=4 | | 13/12-1/2n=-n+3/7 | | -3/4(x+31/2)=6 | | 6/2=33/x | | m-26/7=23/14 | | 33+15w=3w+w+4w | | 2+-2=15x | | 4n-9=180 | | 3/7w-4/3=-1/2 | | 3(x-5)^2+7=34 | | 9b+7+13b+19=180 | | x(x+1)-5(x-2)=2 | | —1/2x+1=-x+7 | | (5x+1)=(2x+5) | | 720x1/3=240 | | 720x1/3=200 | | 2/5(a)-9=17 | | 687-49x=50 | | 4a+3(a-2)=8a-(6-a) | | 8(4+1x)=64 | | 19x+6x+200=625 | | 2x^2+20x-672=0 | | 2/9g=-8/1 |